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1. Introduction: transport noise

• Flandoli/Gubinelli/Priola [Inv. Math. 10]: stochastic transport
equation for X : [0, T ]× Ω→ L∞(Rd):

dX(t) =
{
b(t, ·) · ∇X(t)

}
dt+

d∑
i=1

{∂iX(t)} ◦ dW i(t),

b ∈ L1
loc(([0, T ]× Rd;Rd) with ∇ · b ∈ L1

loc([0, T ]× Rd),
{W i(t)} are independent 1D Brownian motions.

A number of nonlinear SPDEs with transport (i.e. first order differential)
noise have been intensively investigated:

• Burgers: Alonson-Orán/de León/Takao [NoDEA’19]

• 2D Euler: Flandoli/Luo [AOP’20], Lang/Crisan [SPDE-AC’22];
3D Euler: Crisan/Flandoli/Holm [JNS’19].

• 3D Navier-Stokes: Flandoli/Luo [PTRF’21],

• Hunter-Saxton: Holden/Karlsen/Pang [JDE’21].

• General equation in Hilbert space:
Flandoli/Galeati/Luo [CPDE’21];
Alonso-Orán/Rohde/Tang [JNS’21]...
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1. Introduction: motivation

The transport noise is given by first order derivatives (i.e. vector
fields), and hence has 1-order singularity;
it maps from Hs(= W s,2) to Hs−1 for any s ≥ 0.
We intend to consider noise with arbitrary order singularity.

Let Kd = Rd or Td := Rd/Zd, and let s > 0, d,m ∈ N.
We aim to study SPDEs on H := ΠHs(Kd;Rm) driven by

∞∑
k=1

{ΠAkX(t)} ◦ dWk(t) + h̃(t,X(t))dW̃ (t),

singular noise + regular noise

• Π is a projection (Leray projection for NS/Euler equations,
zero-average operator for functions on Td, identity operator);

• {Ak} are pseudo-dimensional operators;

• {Wk(t)} are independent 1-D Brownian motions, W̃ (t) is a
cylindrical Brownian motion on H independent of {Wk(t)};

• h̃(t,Xt) takes value as Hilbert-Schmidt operators in the state
space H.
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A general framework of proper regularization

Let H ↪→ M be two separable Hilbert spaces with continuous and
dense embedding, let

W(t) :=
∑
k≥1

Wk(t) ek

be cylindrical Brownian motion on a separable Hilbert space U
with ONB {ek}k≥1, where {Wk(t)} are independent 1-D Brownian
motions. Consider the following equation on H:

(E1) dX(t) = g(t,X(t))dt+ h(t,X(t))dW(t),

• g : [0, T ]×H→M, (singular)

• h : [0, T ]×H→ L2(U;M). (singular)

L2(U;M): the space of Hilbert-Schmidt operators form U to M.
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Solution

We call (X, τ) a maximal solution to (E1), if

1 τ a stopping time with P(τ > 0) = 1,

2 [0, τ) 3 t 7→ X(t) ∈ H is adapted and weakly continuous,

3 P-a.s.
sup
s∈[0,t]

‖X(s)‖H <∞, t ∈ [0, τ),

lim sup
t↑τ

‖X(t)‖H =∞ on {τ <∞},

and the following equation holds on M (NOT H):

X(t) =X(0) +

∫ t

0

g(s,X(s))ds

+

∫ t

0

h(s,X(s))dW(s), t ∈ [0, τ).

The solution is called non-explosive, if P(τ =∞) = 1.
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Proper regularization

{(gn, hn)}n≥1 is called a proper regularization of (g, h), if

gn : [0,∞)×H→ H, hn : [0,∞)×H→ L2(U;H), n ≥ 1

are measurable such that the following conditions hold for some
increasing K : [0,∞)× [0,∞)→ [0,∞) and a dense M0 ⊂M:

(1) For any t ≥ 0 and X ∈ H,

sup
n≥1

{
‖gn(t,X)‖M + ‖hn(t,X)‖L2(U;M)

}
≤ K(t, ‖X‖M)(1 + ‖X‖H),

lim
n→∞

{
‖gn(t,X)−g(t,X)‖M+‖hn(t,X)−h(t,X)‖L2(U;M)

}
= 0.

(2) For any n,N ≥ 1,

sup
X 6=Y ; t,‖X‖H,‖Y ‖H≤N

{
‖gn(t, 0)‖H + ‖hn(t, 0)‖L2(U;H)

+
‖gn(t,X)− gn(t, Y )‖H + ‖hn(t,X)− hn(t, Y )‖L2(U;H)

‖X − Y ‖H

}
<∞.
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Proper regularization

(3) For any Y ∈ M0, T > 0 and {Xn, X}n≥1 ⊂ Bb([0, T ];H) ∩
C([0, T ];M) with Xn → X in C([0, T ];M) as n→∞,

lim
n→∞

∫ T

0

{∣∣∣〈gn(t,Xn(t))− g(t,X(t)), Y
〉
M

∣∣∣
+
∑
k≥1

〈{
hn(t,Xn(t))− h(t,X(t))

}
ek, Y

〉2
M

}
dt = 0.

(4) (cancellation of singularities) For any t ≥ 0 and X ∈ H,

sup
n≥1

∞∑
k=1

〈hn(t,X)ek, X〉H2 ≤ K(t, ‖X‖M)(1 + ‖X‖H4),

sup
n≥1

{
2 〈gn(t,X), X〉H + ‖hn(t,X)‖2L2(U;H)

}
≤ K(t, ‖X‖M)(1 + ‖X‖H2), Y ∈M0.
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Assumption: local well-posedness

(A) (g, h) has a proper regularization {(gn, hn)}n≥1 satisfying the
(asymptotic quasi monotonicity) condition:

There exist increasing function K : [0,∞)× [0,∞)→ (0,∞),
and a function λ : N× N→ [0,∞) with lim

n,l→∞
λn,l = 0,

such that for any X 6= Y ∈ H,

max

{∑
k≥1

〈{hn(t,X)− hl(t,X)}ek, X − Y 〉M2

‖X − Y ‖2M
,

2 〈gn(t,X)− gl(t, Y ), X − Y 〉M + ‖hn(t,X)− hl(t, Y )‖2L2(U;M)

}
≤ K(t, ‖X‖H + ‖Y ‖H)

(
λn,l + ‖X − Y ‖2M

)
, n, l ≥ 1, t ≥ 0.

Note:

1 For λj,l = 0 and constant K, the condition becomes
monotonicity in M.

2 Since ‖ ·‖M . ‖ ·‖H, even for λn,l = 0, this condition is weaker than
local monotonicity in M.
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Assumption: strong continuity

This assumption implies the existence and uniqueness of maximal solu-
tion. For the continuity in H, we assume

(B) There exists {Tn}n≥1 ⊂ L(M;H) (space of bounded linear opera-
tors form M to H), such that

lim
n→∞

‖TnX −X‖H = 0, X ∈ H,

and for all t ≥ 0, N ≥ 1,

sup
n≥1,‖X‖H≤N

{
2 〈Tng(t,X), TnX〉H + ‖Tnh(t,X)‖2L2(U;H),

∞∑
i=1

〈Tnh(t,X)ei, TnX〉2H

}
≤ K(t,N).

Note: This condition implies the continuity of t 7→ ‖X(t)‖H, which to-
gether with the weak continuity of X(t) in H, implies the strong conti-
nuity.
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Assumption: global well-posedness

Finally, to prove the non-explosion, we assume the following Lyapunov
type condition. When V ′′ < 0, a fast enough growth of the noise coeffi-
cient will kill the growth of other terms, such that the non-explosion is
ensured.

(C) There exists a function 1 ≤ V ∈ C2([0,∞)) satisfying

V ′(r) > 0, V ′′(r) ≤ 0, lim
r→∞

V (r) =∞,

such that for some function 0 ≤ F ∈ L1
loc([0,∞)) and for all

(t,X) ∈ [0,∞)×H,

V ′(‖X‖2M)
{

2
〈
b(t,X) + g(t,X), X

〉
M + ‖h(t,X)‖2L2(U;M)

}
+ 2V ′′(‖X‖2M)

∞∑
k=1

〈h(t,X)ek, X〉2M ≤ F (t)V (‖X‖2M).

Note: This condition comes from Itô’s formula for V (‖X(t)‖2M) of the
solution. Although the solution takes values in H, the proper regulariza-
tion allows to prove non-explosion using the smaller norm ‖ · ‖M.
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Main result

Theorem (1)

Assume (A) and let X(0) be an F0-measurable H-valued random
variable.

(1) (E1) has a unique maximal solution (X, τ), and the solution
satisfies P-a.s.

lim sup
t↑τ

‖X(t)‖M =∞ on {τ <∞}.

(stronger than definition: ‖ · ‖M . ‖ · ‖H)

(2) If (B) holds, then the solution is continuous in H.

(3) If (C) holds, then the solution is non-explosive.
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3. SPDE with pseudo-differential noise

We first introduce pseudo-differential operators on Rd. Those on
Td can be defined correspondingly but with ξ ∈ Zd rather than Rd
for the Fourier transform. Denote

|α|1 :=

d∑
k=1

αk, ∂α :=

d∏
k=1

∂αkk , α = (α1, · · · , αd) ∈ Zd+.

When different variables x, ξ ∈ Rd appear, we use ∂αx and ∂αξ to
denote ∂α in x and ξ respectively. For any s ∈ R, we define two
classes of s-order symbols

Ss :=

{
℘ ∈ C∞(Rd × Rd;C) :

|℘|α,β;s := sup
x,ξ∈Rd

|∂βx∂αξ ℘(x, ξ)|
(1 + |ξ|)s−|α|1

<∞, α, β ∈ Zd+
}
,

Ss0 :=
{
℘ ∈ Ss(Rd × Rd) : ℘(x, ξ) = ℘(ξ)

}
.

A set D ⊂ Ss is called bounded, if

sup
℘∈D
|℘|α,β;s <∞, α, β ∈ Zd+.
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3. SPDE with pseudo-differential noise

For any ℘ ∈ Ss, the pseudo-differential operator OP(℘) with sym-
bol ℘ is defined as

[OP(℘)f ](x) :=

∫
Rd
℘(x, ξ)f̂(ξ)e2πi(x·ξ)dξ, x ∈ Rd,

f̂(ξ) := (2π)d
∫
Rd
f(x)e−2πi(x·ξ)dx, i :=

√
−1.

In the following we only consider real-valued operators, i.e.,
[OP(℘)f ] is real if so is f ; equivalently,

(C) ℘(x,−ξ) = ℘(x, ξ) := Re[℘(x, ξ)]−Im[℘(x, ξ)] i, x, ξ ∈ Kd.

Let

OPSs :=
{

OP(℘) : ℘ ∈ Ss satisfying (C)
}
,

OPSs0 :=
{

OP(℘) : ℘ ∈ Ss0 satisfying (C)
}
.

A set of pseudo-differential operators are called bounded, if so is
the set of their symbols.
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3. SPDE with pseudo-differential noise

Recall that K = R or T. Let d,m ∈ N and s > 0. We will consider
SPDEs on the Hilbert space

H := ΠHs(Kd;Rm),

for a symmetric projection operator Π satisfying certain conditions.
Typical examples of Π include

1 Π = I: the identity operator;

2 Π = ΠL: the Leray projection for m = d:

ΠLH
s(Kd;Rd) = Hs

div(Kd;Rd)
:=
{
X ∈ Hs(Kd;Rd) : ∇ ·X = 0

}
, s ≥ 0,

where∇·X :=
∑d
k=1 ∂kXk is the divergence ofX = (Xk)1≤k≤d

defined in the weak sense;

3 Π = Π0: the zero-average projection on Td:

Π0f := f −
∫
Td
f(x)dx.
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3. SPDE with pseudo-differential noise

Consider the following stochastic equation on H:

(E2) dX(t) = g(X(t))dt

+

∞∑
k=1

[
{ΠAkX(t)} ◦ dWk(t) + h̃k(t,X(t))dW̃k(t)

]
,

{Wk, W̃k}k≥1 are a family of independent 1-D Brownian motions,

h̃k(t, ·) : H→ H, k ≥ 1, t ≥ 0

are locally Lipschitz continuous, (b, g) comes from deterministic
nonlinear PDEs, and

AkX :=
(
akQk,jXj + ãkQ̃k,jXj

)
1≤j≤m,

k ≥ 1, X = (Xj)1≤j≤m ∈ H

for some constants {ak, ãk} ⊂ R, pseudo-differential operators
{Qk,j} ⊂ OPSr0 and {Q̃k,j} ⊂ OPSr0 for some r ≥ r0 ∈ [0, 1].
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Assumption on pseudo-differential noise

(D) Let A∗ be the L2-adjoint of a densely defined linear operator
A in L2.

(1) {ak, ãk} ⊂ R are constants such that akãk = 0 and∑
k≥1

(
a2k + ã2k

)
<∞.

(2) {Qk,j} ⊂ OPSr0 is bounded, {Q̃k,j} ⊂ OPSr0 is bounded, and
there exist a class of bounded zero-order operators
{Tk,j , T̃k,j}k,j ⊂ OPS0 such that

Q∗k,j = Tk,j −Qk,j , Q̃∗k,j = T̃k,j − Q̃k,j .

Note:

1 akãk = 0 avoids possible higher order operators [Qk,i, Q̃k,j ] :=
Qk,iQ̃k,j − Q̃k,jQk,i in the quadratic variation.

2 As extensions to the anti-symmetric operators {∂i} in the transport
noise, {Qk,j , Q̃k,j} are anti-symmetric up to zero-order operators.



A General
Framework
for Solving
Singular
SPDEs

Feng-Yu
Wang

Introduction

2. A general
framework
of proper
regulariza-
tion

Assumption on regular noise

(E) Let H = ΠHs(Kd;Rm) and M = ΠHκ(Kd;Rm) for some s >
2r and κ ∈ [0, s− 2r), where r ≥ r0 is in (D).

There exists an increasing function

K : [0,∞)× [0,∞)→ [0,∞)

such that for any t ≥ 0, X, Y ∈ H,∑
k≥1

‖h̃k(t,X)‖2H ≤ K(t, ‖X‖M)(1 + ‖X‖2H),

∞∑
k=1

‖h̃k(t,X)− h̃k(t, Y )‖2H ≤ K(t, ‖X‖H + ‖Y ‖H)‖X − Y ‖2H,

∞∑
k=1

‖h̃k(t,X)− h̃k(t, Y )‖2M ≤ K(t, ‖X‖H + ‖Y ‖H)‖X − Y ‖2M.
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3. SPDE with pseudo-differential noise

Theorem (2)

Assume (D) and (E). If for Jn := e
1
n

∆,

gn(X) := Jng(JnX), n ≥ 1

is a proper regularization of g, then:

(1) For any F0-measurable X(0) in H, the equation (E2) has a unique
maximal solution, and lim supt↑τ ‖X(t)‖M =∞ on {τ <∞}.

(2) The solution is continuous in H, if there exists an increasing func-
tion K̃ : [0,∞)→ [0,∞) such that

sup
n≥1
|〈Jng(X), JnX〉H| ≤ K̃(‖X‖H), X ∈ H.

It is non-explosive, if there exists 0 ≤ F ∈ L1
loc([0,∞)) such that

2〈b(t,X) + g(X), X〉Hκ +
∑
k

(
‖h̃k(t,X)‖2Hκ −

2〈h̃k(t,X),X〉2Hκ
e+‖X‖2

Hκ

)
(e + ‖X‖2Hκ) log(e + ‖X‖2Hκ)

≤ F (t), t ≥ 0.
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Application to concrete models: MHD

From now on, we assume that the noise coefficients satisfy (D) and
(E) for H,M given in each specific model.

Magnetohydrodynamics equation (MHD) : let

d ≥ 2, m = 2d, α1, α2 ∈ [0, 1], µ1, µ2 ≥ 0,

Let Π = (ΠL,ΠL), where ΠL is the Leray projection, such that

H := ΠHs(Kd;R2d) = Hs
div(Rd;Rd)×Hs

div(Rd;Rd),

and for X := (X1, X2) ∈ H, we define

A(X) :=
(
µ1(−∆)α1X1, µ2(−∆)α2X2

)
,

B(X) := Π
(
(X2 · ∇)X2 − (X1 · ∇)X1, (X2 · ∇)X1 − (X1 · ∇)X2

)
.

The (MHD) equation reads

d

dt
X(t) = gmhd(X(t)) := B(X(t))−AX(t).



A General
Framework
for Solving
Singular
SPDEs

Feng-Yu
Wang

Introduction

2. A general
framework
of proper
regulariza-
tion

Application to concrete models: MHD

When X2 ≡ 0 and α1 = 1, this equation reduces to the Navier-
Stokes (µ1 > 0) equation

d

dt
X1(t) = µ1∆X1(t)−ΠL{X1(t) · ∇}X1(t),

and the Euler (µ1 = 0) equation

d

dt
X1(t) = −ΠL{X1(t) · ∇}X1(t), t ≥ 0.

Let
α0 := 1 + max

i=1,2
(2αi − 1)+1{µi>0}.
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Application to concrete models: MHD

Theorem (MHD)

For any fixed s > 1 + d
2 + [α0 ∨ (2r)], 1 + d

2 < κ < s− [α0 ∨ (2r)],
let

H := Hs
div(Kd;Rd)×Hs

div(Kd;Rd),
M := Hκ

div(Kd;Rd)×Hκ
div(Kd;Rd),

g = gmhd.

Then for any F0-measurable X(0) in H, (E2) has a unique maxi-
mal solution, which is continuous in H and

lim
t↑τ
‖X(t)‖M =∞ on {τ <∞}.

It is non-explosive if locally uniformly in t ≥ 0,

lim
‖X‖M→∞

1

‖X‖3M

∑
k≥1

(
‖h̃k(t,X)‖2M −

2〈h̃k(t,X), X〉2M
1 + ‖X‖2M2

)
< −1.
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Application to concrete models: KdV/Burgers

Korteweg-De Vries (KdV): d = m = 1, K = R, Π = I and

g(X) = gkdv(X) := −X∂X − ∂3X,

where ∂ := d
dx on R.

Theorem (KdV)

Let H = Hs(R;R),M = Hκ(R;R) for any fixed s, κ such that

s >
3

2
+ [3 ∨ (2r)],

3

2
< κ < s− [3 ∨ (2r)].

Then all assertions in Theorem (MHD) hold for SPDE (E2) with

g = gkdv.

Burgers: gbg(X) = −X∂X + ν∂2X, ν ≥ 0.

The assertions hold for 2 ∨ (2r) replacing 3 ∨ (2r).
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Application to concrete models: CH

Camassa-Holms (CH): d = m = 1, K = R, Π = I and

g(X) = gch(X) := −X∂X − ∂(I −∆)−1
( 4∑
i=1

ciX
i + c|∂X|2

)
,

where {c, ci}1≤i≤4 are constants.

Theorem (CH)

Let H = Hs(R;R),M = Hκ(R;R) for some

s >
3

2
+ [1 ∨ (2r)],

3

2
< κ < s− [1 ∨ (2r)].

Then all assertions in Theorem (MHD) hold for SPDE (E2),
except that the non-explosion condition is strengthened as

lim
‖X‖M→∞

1

‖X‖5M

∑
k≥1

(
‖h̃k(t,X)‖2M −

2〈h̃k(t,X), X〉2M
1 + ‖X‖2M2

)
< −1.
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Application to concrete models: AD

Aggregation-diffusion (AD): d ≥ 2,m = 1,Π = I.
Let K ∈ S(Kd) (rapidly decreasing interaction kernel) such that

B := ∇{K ∗} ∈ OPS−1,

where {K ∗}f(x) :=
∫
Kd K(x− y)f(y)dy.

The Aggregation-diffusion equation reads

d

dt
X(t) = gad(X(t)),

gad(X) := −ν(−∆)β − γ∇ · (XBX),

where β ∈ [0, 1], ν ≥ 0 and 0 6= γ ∈ R are constants. Let

β0 := 1 + (2β − 1)+1{ν>0}.
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Application to concrete models: AD

Theorem (AD)

Let H = Hs(Kd;R),M = Hκ(Kd;R) for some

s > 1 +
d

2
+ [β0 ∨ (2r)], 1 +

d

2
< κ < s− [β0 ∨ (2r)].

Then all assertions in Theorem (MHD) hold for SPDE (E2) with

g = gad.

.
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Application to concrete models: SQG

Surface quasi-geostrophic (SQG): d = 2,m = 1 and

Π =

{
I, if K2 = R2,

Π0, if K2 = T2.

Let R be the Riesz transform on ΠH0:

RX :=
(
− ∂2(−∆)−

1
2X, ∂1(−∆)−

1
2X
)
.

the SQG equation reads

d

dt
X(t) = gsqg(X(t)) := Π

{
(RX(t)) · ∇X(t)

}
.
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Application to concrete models: SQG

Theorem (SQG)

Let H = ΠHs(K2;R),M = ΠHκ(K2;R) for some

s > 1 +
d

2
+ [β0 ∨ (2r)], 1 +

d

2
< κ < s− [β0 ∨ (2r)].

Then all assertions in Theorem (MHD) hold for SPDE (E2) with

g = gad.

.
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